

Stationary Solutions of Incompressible Stokes Equation for a Circular Pipe

M. Heil

Fachbereich Physik der Philipps-Universität Marburg

Z. Naturforsch. **42a**, 543–546 (1987); received January 23, 1987

Stationary modes of the incompressible Stokes equation are derived using the method of potentials. Their relation to instationary modes is discussed.

In a recent paper [1] a method developed by Hansen, Stratton, Morse, Feshbach [2] (“HSMF-method”) for solving linear vector-wave equations in electrodynamics was applied to find analytical expressions for three-dimensional time-dependent solutions of the Stokes equation for a pipe with circular cross-section. In this paper we derive analytical expressions for stationary modes of the stationary Stokes equation

$$\frac{1}{\varrho_0} \frac{\partial p}{\partial r} = -v_0 \operatorname{rot} \operatorname{rot} \mathbf{u}, \quad \operatorname{div} \mathbf{u} = 0 \quad (1)$$

with the help of “potentials” a, b for the same geometry and boundary condition as in [1].

Expressing \mathbf{u} and p by potentials $a(\mathbf{r}, t)$, $b(\mathbf{r}, t)$ ([1], ref. 24)

$$\begin{aligned} \mathbf{u} &= \operatorname{rot} \mathbf{a} + \operatorname{rot} \operatorname{rot} \mathbf{b}, \quad p = p_0 + \varrho_0 v_0 \operatorname{div} (\mathbf{e}_z \Delta b), \\ \mathbf{a} &= a \mathbf{e}_z, \quad \mathbf{b} = b \mathbf{e}_z, \end{aligned} \quad (2)$$

we get for a, b the differential equations

$$\Delta a = 0, \quad \Delta \Delta b = 0. \quad (3)$$

Introducing cylindrical coordinates r, φ, z and separating $a(r, \varphi, z)$ and $b(r, \varphi, z)$ into $a(r, \varphi, z) = a_r(r) a_\varphi(\varphi) a_z(z)$, $b(r, \varphi, z) = b_r(r) b_\varphi(\varphi) b_z(z)$ we find for $k \neq 0$ the solutions

$$\begin{aligned} a(r, \varphi, z) &= a_m J_m(i k r) e^{im\varphi} e^{ikz}, \\ b(r, \varphi, z) &= b_m J_m(i k r) e^{im\varphi} e^{ikz} \\ &\quad + \frac{c_m r}{i k} J'_m(i k r) e^{im\varphi} e^{ikz}, \end{aligned} \quad (4)$$

Reprint requests to Dr. Heil, Fachbereich Physik der Philipps-Universität, Renthof 6, 3550 Marburg.

which give

$$\begin{aligned} u_r &= \left[a_m \frac{im}{r} J_m + b_m k^2 \left(J_{m+1} - \frac{m}{ikr} J_m \right) \right. \\ &\quad \left. + c_m \left(\frac{m^2}{ikr} - ik \right) J_m \right] e^{im\varphi} e^{ikz}, \\ u_\varphi &= \left[a_m i k \left(J_{m+1} - \frac{m}{ikr} J_m \right) - b_m \frac{mk}{r} J_m \right. \\ &\quad \left. + c_m i m \left(\frac{m}{ikr} J_m - J_{m+1} \right) \right] e^{im\varphi} e^{ikz}, \\ u_z &= [-b_m k^2 J_m \\ &\quad + c_m \{(2+m)J_m - ik r J_{m+1}\}] e^{im\varphi} e^{ikz}. \end{aligned} \quad (5)$$

The boundary condition $\mathbf{u}(r = R, \varphi, z) = \mathbf{0}$ leads to the dispersion relation

$$\begin{aligned} D_S(k, m) &:= i k R m J_m^3(i k R) \\ &\quad + [k^2 R^2 - 2m(2+m)] J_m^2 J_{m+1} \\ &\quad + i k R (2+3m) J_m J_{m+1}^2 \\ &\quad + k^2 R^2 J_{m+1}^3 = 0, \\ m &= 0, 1, 2, \dots \end{aligned} \quad (6)$$

For $m = 0$ we find

$$J_1 \left[J_0^2 + \frac{2i}{kR} J_0 J_1 + J_1^2 \right] = 0, \quad (7)$$

which means either

a) $J_1(i k^{(j)} R) = 0, \quad k^{(j)} = i k_i^{(j)},$
 $(k_i^{(j)} > 0 \text{ for } z > 0),$
 $a_0 \neq 0, \quad b_0 = c_0 = 0, \quad j = 1, 2, 3, \dots$ (7a)

or
b) $J_0^2 + \frac{2i}{k^{(j)} R} J_0 J_1 + J_1^2 = 0 \Leftrightarrow J_0 J_2 = J_1^2,$ (7b)

$$a_0 = 0, \quad b_0 \neq 0, \quad c_0 \neq 0.$$

See also [3], p. 547.

0932-0784 / 87 / 0600-0543 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition “no derivative works”). This is to allow reuse in the area of future scientific usage.

Solutions $\mathbf{u}(r, \varphi, z)$ which belong to a) or b) are given by

$$\begin{aligned} \text{a)} \quad \mathbf{u}^{(0,j)} &= -\mathbf{e}_\varphi a_0 i k^{(j)} J_1(i k^{(j)} r) e^{i k^{(j)} z} \\ &= -\mathbf{e}_\varphi \tilde{a}_0^{(j)} J_1(i k^{(j)} r) e^{-k_i^{(j)} z}, \\ \tilde{a}_0^{(j)} &= a_0 k_i^{(j)}, \end{aligned} \quad (8\text{a})$$

$$\begin{aligned} \text{b)} \quad u_r^{(0,j)} &= \tilde{b}_0^{(j)} \left[J_1(i k^{(j)} r) \right. \\ &\quad \left. - \frac{r}{R} \frac{J_0(i k^{(j)} r)}{J_0(i k^{(j)} R)} J_1(i k^{(j)} R) \right] e^{i k^{(j)} z}, \\ u_\varphi^{(0,j)} &= 0, \end{aligned} \quad (8\text{b})$$

$$u_z^{(0,j)} = \tilde{b}_0^{(j)} \left[\frac{\{2J_0(i k^{(j)} r) - i k^{(j)} r J_1(i k^{(j)} r)\} J_0(i k^{(j)} R)}{2J_0(i k^{(j)} R) - i k^{(j)} R J_1(i k^{(j)} R)} - J_0(i k^{(j)} r) \right] e^{i k^{(j)} z},$$

$$a_0 = 0, \quad c_0 = \frac{b_0(k^{(j)})^2 J_1(i k^{(j)} R)}{i k^{(j)} R J_0(i k^{(j)} R)}.$$

Solutions for $m \neq 0$ can be found from (5) with

$$\begin{aligned} c_m^{(j)} &= \tilde{b}_m^{(j)} \frac{J_m(i k^{(j)} R)}{(2+m) J_m(i k^{(j)} R) - i k^{(j)} R J_{m+1}(i k^{(j)} R)}, \\ a_m^{(j)} &= \tilde{b}_m^{(j)} \frac{i R}{m J_m(i k^{(j)} R)} \frac{\left(J_{m+1} - \frac{m}{i k^{(j)} R} J_m \right) \left[(2+m) J_m - i k^{(j)} R J_{m+1} \right] + \left(\frac{m^2}{i k^{(j)} R} - i k^{(j)} R \right) J_m^2}{(2+m) J_m(i k^{(j)} R) - i k^{(j)} R J_{m+1}(i k^{(j)} R)}, \end{aligned} \quad (9)$$

where $k^{(j)}$ are solutions of (6) and $\tilde{b}_m^{(j)} = b_m(k^{(j)})^2$. The stationary pressure functions $p^{(m,j)}(r, \varphi, z)$ for $k^{(j)} \neq 0$, which follow from (2), (4) are given by

$$\begin{aligned} p^{(m,j)}(r, \varphi, z) &= p_0 - 2 \varrho_0 v_0 i k^{(j)} c_m^{(j)} \\ &\quad \cdot J_m(i k^{(j)} r) e^{i m \varphi} e^{i k^{(j)} z}. \end{aligned} \quad (10)$$

If $k^{(j)}$ is a solution of (6) the same holds for $-k^{(j)}$. Numerical calculations for $m=0$ ([1]) with small but finite values of σ are in agreement with (7 a) to (8 b). As can be seen from (6), there exist no solutions for $k^{(j)}$ with

$$\begin{aligned} J'_m(i k^{(j)} R) &= -J_{m+1}(i k^{(j)} R) \\ &\quad + \frac{m}{i k^{(j)} R} J_m(i k^{(j)} R) = 0, \quad m > 0, \end{aligned}$$

as might be supposed from Figs. 1, 2 in [1].

The analytical limit process $\sigma \rightarrow 0$ applied to (19) of [1], where σ is the time-separation constant, does not give the dispersion relation for the stationary

modes, since $\lim_{\sigma \rightarrow 0} D(k, m, \sigma) \equiv 0$. $D(k, m, \sigma)$ denotes the right hand side of equation (19) in [1] for incompressible flow. Instead, the following relation holds ($k \neq 0$):

$$D_S(k, m) = \text{const} \left. \frac{\partial D(k, m, \sigma)}{\partial \sigma} \right|_{\sigma=0}. \quad (11)$$

As can be shown by simple but lengthy calculations a similar relation can be found between the stationary modes $\mathbf{u}^{(m,j)}(r, \varphi, z)$ and the instationary solutions $\mathbf{u}^{(m)}(r, \varphi, z, t, k, \sigma)$ (equation (17) in [1]) which fulfill the boundary condition $\mathbf{u}^{(m)}(r=R, \varphi=0, z=0, t=0) = \mathbf{0}$:

$$u_z^{(0,j)} = \tilde{b}_0^{(j)} \left[\frac{\{2J_0(i k^{(j)} r) - i k^{(j)} r J_1(i k^{(j)} r)\} J_0(i k^{(j)} R)}{2J_0(i k^{(j)} R) - i k^{(j)} R J_1(i k^{(j)} R)} - J_0(i k^{(j)} r) \right] e^{i k^{(j)} z},$$

$$a_0 = 0, \quad c_0 = \frac{b_0(k^{(j)})^2 J_1(i k^{(j)} R)}{i k^{(j)} R J_0(i k^{(j)} R)}.$$

Solutions for $m \neq 0$ can be found from (5) with

$$\begin{aligned} c_m^{(j)} &= \tilde{b}_m^{(j)} \frac{J_m(i k^{(j)} R)}{(2+m) J_m(i k^{(j)} R) - i k^{(j)} R J_{m+1}(i k^{(j)} R)}, \\ a_m^{(j)} &= \tilde{b}_m^{(j)} \frac{i R}{m J_m(i k^{(j)} R)} \frac{\left(J_{m+1} - \frac{m}{i k^{(j)} R} J_m \right) \left[(2+m) J_m - i k^{(j)} R J_{m+1} \right] + \left(\frac{m^2}{i k^{(j)} R} - i k^{(j)} R \right) J_m^2}{(2+m) J_m(i k^{(j)} R) - i k^{(j)} R J_{m+1}(i k^{(j)} R)}, \end{aligned} \quad (9)$$

where $k^{(j)}$ are solutions of (6) and $\tilde{b}_m^{(j)} = b_m(k^{(j)})^2$. The stationary pressure functions $p^{(m,j)}(r, \varphi, z)$ for $k^{(j)} \neq 0$, which follow from (2), (4) are given by

$$\varphi, z, t, k, \sigma) = \mathbf{0}:$$

$$\mathbf{u}^{(m,j)}(r, \varphi, z) = \left. \frac{\partial [\mathbf{u}_{(r, \varphi, z, t, k, \sigma)}^{(m)} e^{\sigma t}]}{\partial \sigma} \right|_{\substack{\sigma=0 \\ k=k^{(j)}}} \cdot A(m, k^{(j)}) \quad (a_0 = 0 \text{ for } m = 0). \quad (12)$$

$A(m, k^{(j)})$ are constants and $k^{(j)}$ is a solution of (6). The only exception of relation (12) is the stationary solution for $m=0$, $a_0 \neq 0$, $b_0 = c_0 = 0$. In this special case $\mathbf{u}^{(0,j)}(r, z)$ follows directly from

$$\begin{aligned} \mathbf{u}^{(0)}(r, z, t, k, \sigma) &= -\mathbf{e}_\varphi a_0 \sqrt{\frac{\sigma}{v_0} - k^2} J'_0 \left(\sqrt{\frac{\sigma}{v_0} - k^2} \right) e^{i k z} e^{-\sigma t} \end{aligned} \quad (13)$$

for $\sigma=0$ since $\mathbf{u}^{(0)}(r, z, t, k, \sigma=0) \neq \mathbf{0}$. For $\sigma=0$ ($a_0=0$ for $m=0$) one gets

$$\lim_{\sigma \rightarrow 0} \mathbf{u}^{(m)}(r, \varphi, z, t, k, \sigma) = \mathbf{0}.$$

The relation between the stationary pressure functions (10) and the corresponding instationary ones

(Eq. (16) of [1] for $c_c = \infty$) is found to be

$$p^{(m,j)}(r, \varphi, z) = p_0 + \frac{\partial [P_{(r, \varphi, z, t; k, \sigma)}^{(m)} e^{\sigma t}]}{\partial \sigma} \Big|_{\substack{\sigma=0 \\ k=k^{(j)}}} \cdot B(m, k^{(j)}), \quad (14)$$

where $B(m, k^{(j)})$ are constants. Without explicit knowledge of the stationary functions $D_S(k, m)$, $\mathbf{u}^{(m,j)}(r, \varphi, z)$, $p^{(m,j)}(r, \varphi, z)$ it does not seem possible to state the relations (11), (12), (14). In order to get the relations (12) and (14), the process $\sigma \rightarrow 0$ with $b_m \sigma = b_m^* = \text{const}$ must be used, where the constants b_m enter the functions $\mathbf{u}^{(m)}$, $p^{(m)}$ according to equation (18) of [1] for $c_c = \infty$. If one interprets the functions $\mathbf{u}^{(m)}$ or $\mathbf{u}^{(m,j)}$ for $k \neq 0$ as flow patterns in the pipe, the corresponding Reynolds-numbers must be assumed to be very small, which means that the coefficients a_0, b_m must be sufficiently small.

The case of vanishing separation constant k is of certain interest. If one solves (1) to (3) for $k = 0$ and $\mathbf{u}(r = R, \varphi, z) = \mathbf{0}$, only the trivial solution $\mathbf{u} \equiv \mathbf{0}$, $p = \text{const}$. results: especially the Hagen-Poiseuille-solution for $m = 0$ does not appear. The reason is that the Hagen-Poiseuille-solution $\mathbf{u}_{HP}(r) = u_0(1 - r^2/R^2) \mathbf{e}_z$ cannot be represented by (3). For $k = 0, m = 0$, however, (1) is solved by

$$\begin{aligned} \mathbf{u}^{(0,0)} &= \text{rot} \cdot \text{rot} \mathbf{b}_r^{(0,0)}(r), \quad p^{(0,0)} = p_0 - c \varrho_0 v_0 z, \\ \mathbf{b}_r^{(0,0)} &= \mathbf{e}_z b_r^{(0,0)}(r), \quad \Delta_r \Delta_r b_r^{(0,0)} = c, \\ \Delta_r &= \frac{1}{r} \left(r \frac{d}{dr} \right), \end{aligned} \quad (15)$$

where c is an arbitrary constant. The solution of $\Delta_r \Delta_r b_r^{(0,0)}(r) = c$ consists of the general solution of the homogeneous equation and a special solution of the inhomogeneous equation. Taking into account the non-trivial, non-singular terms only, we have

$$\begin{aligned} b_r^{(0,0)}(r) &= b_0 r^2 + \frac{c}{64} r^4 + b_1 r^2 \ln r, \\ \Delta_r b_r^{(0,0)} &= \frac{c r^2}{4} + 4 b_0 \\ &\quad + 4 b_1 (\ln r + 1), \quad b_1 = 0, \end{aligned} \quad (16)$$

which gives

$$\mathbf{u}_{(z)}^{(0,0)} = \frac{c}{4 R^2} \left(1 - \frac{r^2}{R^2} \right) \mathbf{e}_z, \quad p_{(z)}^{(0,0)} = p_0 - c \varrho_0 v_0 z. \quad (17)$$

As already Sexl [3] observed, the Hagen-Poiseuille solution can be found also from the time-dependent

solutions of the Stokes equation for $m = 0, k = 0$ by the process $\lim_{\substack{\sigma \rightarrow 0 \\ c \sigma = \text{const}}} \mathbf{u}_S^{(0)}(r, t, \sigma)$, where $\mathbf{u}_S^{(0)}$ denotes the

functions found by Sexl ([3], p. 575). In order to find all stationary solutions for $k = 0$ from the time-dependent solutions of the Stokes equation by using the HSMF-method we take the solutions found by Brosa [1]. Since he did not separate the Helmholtz-equation for $k = 0$ quite correctly, we summarize the three types of time-dependent solutions for $k = 0$:

a) $m = 0, \varrho_0$ arbitrary, b_0 arbitrary:

$$\begin{aligned} J_1 \left(\sqrt{\frac{\sigma_1^{(j)}}{v_0}} R \right) &= 0, \quad j = 1, 2, 3, \dots, \quad u_r^{(0)} = 0, \\ u_\varphi^{(0)} &= a_0 \sqrt{\frac{\sigma_1^{(j)}}{v_0}} J_1 \left(\sqrt{\frac{\sigma_1^{(j)}}{v_0}} r \right) e^{-\sigma_1^{(j)} t}, \\ u_z^{(0)} &= b_0 \frac{\sigma_1^{(j)}}{v_0} \left[J_0 \left(\sqrt{\frac{\sigma_1^{(j)}}{v_0}} r \right) \right. \\ &\quad \left. - J_0 \left(\sqrt{\frac{\sigma_1^{(j)}}{v_0}} R \right) \right] e^{-\sigma_1^{(j)} t}. \end{aligned} \quad (18)$$

b) $m = 0, b_0$ arbitrary, σ arbitrary:

$$\begin{aligned} u_r^{(0)} &= 0, \quad u_\varphi^{(0)} = 0, \\ u_z^{(0)} &= b_0 \frac{\sigma}{v_0} \left[J_0 \left(\sqrt{\frac{\sigma}{v_0}} r \right) \right. \\ &\quad \left. - J_0 \left(\sqrt{\frac{\sigma}{v_0}} R \right) \right] e^{-\sigma t}. \end{aligned} \quad (19)$$

c) $m = 0, 1, 2, \dots, b_m$ arbitrary:

$$\begin{aligned} J_m \left(\sqrt{\frac{\sigma_m^{(j)}}{v_0}} R \right) &= 0, \quad u_r^{(m)} = 0, \quad u_\varphi^{(m)} = 0, \\ u_z^{(m)} &= b_m \frac{\sigma_m^{(j)}}{v_0} J_m \left(\sqrt{\frac{\sigma_m^{(j)}}{v_0}} r \right) e^{i m \varphi} e^{-\sigma_m^{(j)} t}. \end{aligned} \quad (20)$$

If we look for stationary solutions with $k = 0$ as result of a process $\sigma \rightarrow 0$, $b_m \sigma^n = \text{const}$, only solutions of type b) can be used since in the other two cases $\sigma = 0$ cannot be approached smoothly. Making explicit the argument used in [1] we get for

$$\begin{aligned} u_z^{(0)}(r, t, \sigma) &= b_0 \frac{\sigma}{v_0} \left[J_0 \left(\sqrt{\frac{\sigma}{v_0}} r \right) - J_0 \left(\sqrt{\frac{\sigma}{v_0}} R \right) \right] e^{-\sigma t} \end{aligned}$$

the relations

$$u_z^{(0)}(r, t, \sigma = 0) = 0, \quad \left(\frac{\partial u_z^{(0)}(\sigma)}{\partial \sigma} \right)_{\sigma=0} = 0, \\ \left(\frac{\partial^2 u_z^{(0)}(\sigma)}{\partial \sigma^2} \right)_{\sigma=0} = \frac{b_0}{2 v_0^2} (R^2 - r^2).$$

Thus we find

$$\lim_{\substack{\sigma \rightarrow 0 \\ b_0 \sigma^2 = b_0^*}} \mathbf{u}^{(0)}(r, t, \sigma) = \frac{b_0^*}{4 v_0^2} (R^2 - r^2) \mathbf{e}_z \\ = u_0 \left(1 - \frac{r^2}{R^2} \right) \mathbf{e}_z =: \mathbf{u}_{\text{HP}}(r), \\ u_0 = b_0^* R^2 / 4 v_0^2.$$

In the same way the stationary pressure $p_{\text{HP}}(z)$ follows from

$$p_{\text{HP}}(z) = \lim_{\substack{\sigma \rightarrow 0 \\ b_0 \sigma^2 = b_0^*}} p^{(0)}(z, t, \sigma),$$

where $p^{(0)}(z, t, \sigma)$ is given by ([1], Eq. (27))

$$p^{(0)}(z, t, \sigma) = p_0 - \varrho_0 b_0 \frac{\sigma^2}{v_0} J_0 \left(\sqrt{\frac{\sigma}{v_0}} R \right) z e^{-\sigma t}.$$

With

$$p^{(0)}(z, t, \sigma = 0) = p_0, \quad \left(\frac{\partial p^{(0)}(\sigma)}{\partial \sigma} \right)_{\sigma=0} = 0, \\ \left(\frac{\partial^2 p^{(0)}(\sigma)}{\partial \sigma^2} \right)_{\sigma=0} = - \frac{2 \varrho_0 b_0}{v_0} z$$

we get finally

$$p_{\text{HP}}(z) = p_0 - \frac{\varrho_0}{v_0} b_0^* z = p_0 - 4 \varrho_0 v_0 \frac{u_0}{R^2} z.$$

Contrary to the stationary solutions $\mathbf{u}^{(m,j)}(r, \varphi, z)$, the coefficient b_0^* (or u_0) which appears in $\mathbf{u}_{\text{HP}}(r)$ may take values which give large Reynolds-numbers since $\mathbf{u}_{\text{HP}}(r)$ solves the stationary non-linear Navier-Stokes equation.

With regard to the infinite pipe the Hagen-Poiseuille-solution remains as the only stationary solution of the Stokes equation which fulfills the (incomplete) boundary condition $\mathbf{u}(r = R) = \mathbf{0}$, which possesses continuous partial derivatives everywhere and which is bounded for $-\infty < z < \infty$. The functions $\mathbf{u}^{(m,j)}(r, \varphi, z)$ with $k \neq 0$ represent solutions of the Stokes equation for the semi-infinite pipe with $\mathbf{u}^{(m,j)}(r, \varphi, z \rightarrow \infty) = \mathbf{0}$ and a prescribed boundary condition at $z = 0$.

We want to mention that also $\Delta a = 0$ (2) is only sufficient to solve (1). If for the case $m = 0$, $k = 0$ one lets $\Delta a = c$, one finds an additional solution $\mathbf{u}(r) = -\frac{1}{2} c r \mathbf{e}_\varphi$, which gives no contribution for homogeneous boundary conditions $\mathbf{u}^{(0,0)}(r) = \mathbf{0}$, but for a boundary condition

$$u_r^{(0,0)}(r = R) = u_z^{(0,0)}(r = R) = 0, \\ u_\varphi^{(0,0)}(r = R) = u_{\varphi 0},$$

which characterizes a rotating pipe.

[1] U. Brosa, Z. Naturforsch. **41a**, 1141 (1986).
 [2] J. A. Stratton, Electromagnetic Theory, McGraw-Hill
 New York 1941. P. M. Morse and H. Feshbach,

Methods of Theoretical Physics, Part II, McGraw-Hill,
 New York 1953.
 [3] Th. Sexl, Ann. Phys. **87**, 570 (1928).