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Stationary modes of the incompressible Stokes equation are derived using the method of
potentials. Their relation to instationary modes is discussed.

In a recent paper [1] a method developed by
Hansen, Stratton, Morse, Feshbach [2] (“HSMF-
method”™) for solving linear vector-wave equations
in electrodynamics was applied to find analytical
expressions for three-dimensional time-dependent
solutions of the Stokes equation for a pipe with
circular cross-section. In this paper we derive
analytical expressions for stationary modes of the
stationary Stokes equation
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with the help of “potentials” a, b for the same
geometry and boundary condition as in [1].

Expressing u and p by potentials a(r, 1), b(r,t)
([1], ref. 24)

u=rota+rotroth, p=py+ yvydiv(e,4b),

b=be., (2)

a=aqe.,
we get for a, b the differential equations

Ada=0, A4b=0. 3

Introducing cylindrical coordinates r, ¢, z and separ-
ating a(r,¢,z) and b(r,p,z) into a(r,p,z)=
a,(r) a,(p) a:(z), b(r,p,z)=b.(r) b,(p) b.(z) we
find for k # 0 the solutions

a(r, p,z) = ay,J, (ikr)eme ek

b(r, ¢, 2) = by, (ikr)emseik:
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The boundary condition u(r =R, ¢, z) = 0 leads to
the dispersion relation
Dg(k,m):=ik RmJ3} (ik R)
+[k2R2=2m Q2+ m)J3J 4
+ikRQ+3m)J,J3
+k*R%*J3,.,=0,
m=0,1,2,.... (6)

For m =0 we find

2
Jl J(2)+ﬁJ0J|+J% =0’ (7)
which means either
a) Ji((kYR)=0, kV=ik?,
(k9> 0 for z>0),

ao#O, b0=C0=O, j=l,2,3,... (73)
or 93
1
b) J3+WJ0J|+J%=O<:>J0J2=J%, (7b)
a0=0, b():*:o, C():':O.

See also [3], p. 547.
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Solutions u(r,
given by

¢. z) which belong to a) or b) are
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modes, since limOD(k. m,o) =0. D (k, m, o) de-

notes the right hand side of equation (19) in [1] for
incompressible flow. Instead, the following relation
holds (k # 0):

oD (k, m, o)
0o =0 '

As can be shown by simple but lengthy calculations
a similar relation can be found between the sta-
tionary modes u™/ (r,p,z) and the instationary
solutions u™ (r, g, z, 1, k, 6) (equation (17) in [1])
which fulfill the boundary condition u™ (r=R

Ds (k, m) = const (11)

ug =0, (8b)

w0 = B [ 2Jo(i kD r) — i kD rJ, (i kD 1)} Jo (i k9 R)
2Jo(i kY R)—ikY'RJ, (ikVR)

=0, c= by (k))*J, (i k' R)

ikORJIy(ikVR)

Solutions for m # 0 can be found from (5) with

—Jo(ikOr)| e'*"z,

i T (i kD R)
cy J) = b ()
QR+m)J, (ikVR)—ikVRI, . (ikPR)’
m . m? .
Im+1= 75 In] | @+ M) Ty — i kORI 1| +| 755 — ikPR) T2,
0 = 50 e ( "ikOR ) AT g t (ik‘-”R : ) &
Ay = O . z - . - - - .
mJ,, (i kD R) QR+m)J,(ikP?R)—ikVRJ,, . (ikVR)
where kY are solutions of (6) and /Y = b, (kV)
The stationary pressure functions p™? (r, ¢, z) for -2 1.k.0)=
kU # 0, which follow from (2), (4) are given by -
u™md (r, g, z) = O 1k ) €]
(m,j) (e -) — s LD AU Gl Ufoul
P (r e, 2) =po—200voi kY ¢y k=k
T (kD ) eimeeik”z (1) “Am, kD) (ag=0 for m=0). (12)

If kY is a solution of (6) the same holds for —k.
Numerical calculations for m=0 ([1]) with small
but finite values of ¢ are in agreement with (7 a) to
(8b). As can be seen from (6), there exist no
solutions for k¥ with

Jn((kPR) ==Jps ) (i kD R)

T 7, (i kOR)=0,m>0
+m m (0 )=0,m>0,

as might be supposed from Figs. 1, 2 in[1].

The analytical limit process ¢ — 0 applied to (19)
of [1], where ¢ is the time-separation constant, does
not give the dispersion relation for the stationary

A (m, k¥) are constants and &) is a solution of (6).
The only exception of relation (12) is the stationary
solution for m =0, ay # 0, by = ¢; = 0. In this special
case u®) (r, z) follows directly from

uOr, z 1, k, o)

=—e aoV——szo( ——k2) ekze™  (13)

for ¢=0 since u®(r,z, 1, k,6=0)#0. For 6=0
(ag =0 for m = 0) one gets

lhm a" (r.p.z.1.k.g)=0.
a—0

The relation between the stationary pressure func-
tions (10) and the corresponding instationary ones
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(Eq. (16) of [1] for ¢, = oc) is found to be

0 [pé;n)w z, 1.k, 0) ear]
aa U=£U)

L
“B(m, kY,

P (r 9. 2)=po+
(14)

where B (m, k) are constants. Without explicit
knowledge of the stationary functions Dg(k, m),
u™D(r, g, z), p™)(r, p, z) it does not seem possible
to state the relations (11), (12), (14). In order to get
the relations (12) and (14), the process ¢ — 0 with
b,, o = b} = const must be used, where the constants
b,, enter the functions u™, p(™ according to equa-
tion (18) of [1] for ¢.= oo. If one interprets the
functions #™ or u'™) for k # 0 as flow patterns in
the pipe, the corresponding Reynolds-numbers must
be assumed to be very small, which means that the
coefficients ag, b,, must be sufficiently small.

The case of vanishing separation constant k is of
certain interest. If one solves (1) to (3) for £ =0 and
u(r=R, ¢, z)=0, only the trivial solution u =0,
p =const. results: especially the Hagen-Poiseuille-
solution for m =0 does not appear. The reason is
that the Hagen-Poiseuille-solution  wyp(r) =
uo (1 —r*/R?) e. cannot be represented by (3). For
k =0, m =0, however, (1) is solved by

u®9=rot-rot 5> (r), p©V=py—coyvz,

bgO.O)ZeZbSO,O)().)‘ A,A,b‘,°'°’=c,

)
4, =—\r—]|,
r\ dr

where ¢ i1s an arbitrary constant. The solution of
A4,4,b%9 (r) = ¢ consists of the general solution of
the homogeneous equation and a special solution of
the inhomogeneous equation. Taking into account
the non-trivial, non-singular terms only, we have

(15)

b0 (r) = byr?+ 6L4 r*+ b rinr,

2

cr
4600 =——+4b

+4b](]n/'+]). b]=0. (16)

which gives

#
w00 __ ¢

r2
0,0) _ -
(2) 4R2(1—F)e:, p%__))_po—CQovo-.(l7)

As already Sexl [3] observed, the Hagen-Poiseuille
solution can be found also from the time-dependent

solutions of the Stokes equation for m =0, kK =0 by
the process lim 4l (r, 1, ), where u{? denotes the
(‘Ua=_(;0(l’)‘lsl

functions found by SexI ([3], p. 575). In order to find
all stationary solutions for k=0 from the time-
dependent solutions of the Stokes equation by using
the HSMF-method we take the solutions found by
Brosa [1]. Since he did not separate the Helmholtz-
equation for k=0 quite correctly, we summarize
the three types of time-dependent solutions for
k=0:

a) m = 0, 1 arbitrary, by arbitrary:

o
J) —R)=0, J= 1k 2584 avay
Yo
705 (i)
Ji (l@— r) e It
Yo
) = 77)
Llf.°)= bofl_ [_]O(VU_' ,.)
Vo Vo

u® =0,

U) ()
—Jo( =L R)] e (18)
Vo
b)  m =0, by arbitrary, ¢ arbitrary:
u® =0, ufpo’=0,
u® = py— [JO(Vi ,.)
Yo Vo
—Jo( L R)]e“”. (19)
Vo

c) m=0,1,2,..., b, arbitrary:

o)
I — R|=0, u™=0, uf"=0,
Yo
() ) ;
ulm = bma_’"Jm( I/ Om ,.) eimo g=dnt (20)
Yo Yo

If we look for stationary solutions with k=0 as
result of a process ¢ — 0, b,, 0" = const, only solu-
tions of type b) can be used since in the other two
cases g = 0 cannot be approached smoothly. Making
explicit the argument used in [1] we get for

u® (r, 1, 0)
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the relations

oul®
u®(r,1,6=0)=0, (u—(a)) =0,
Gly o=0

(azuf-"’(o)) _b
3 |/,

Thus we find

Il
o

o

=
o

b3
lim wO, 1, 0)=—7

a—0 4y
boo2=by

= uo(l ———2) e. = uyp(r),
uy=bER*/4v}.
In the same way the stationary pressure pyp(z)
follows from
pup(2) = lim  p®(z1,0),
boa?= b}

where p© (z, 1, 0) is given by ([1], Eq. (27))

a2 o
POzt 0) =py— 00 bo— Jo == R):e_‘”.
Vo Yo

With

(0)
POz t,0=0)=py, (__ap (a)) =0,
oo =0
(azpw)(o) __ 200by
0o’ o=0_ w oo
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we get finally
Q U
pup(2) =po——biz=po—4ovw—5z.
Vo R

Contrary to the stationary solutions u™ (r, ¢, z),
the coefficient b§ (or ug) which appears in wuyp (1)
may take values which give large Reynolds-numbers
since uyp (r) solves the stationary non-linear Navier-
Stokes equation.

With regard to the infinite pipe the Hagen-
Poiseuille-solution remains as the only stationary
solution of the Stokes equation which fulfills the
(incomplete) boundary condition u(r=R)=0,
which possesses continuous partial derivatives every-
where and which is bounded for —oo <z < c0.
The functions u™? (r,p,z) with k# 0 represent
solutions of the Stokes equation for the semi-infinite
pipe with ™/ (r, g,z - 00) =0 and a prescribed
boundary condition at z = 0.

We want to mention that also 4a=0 (2) is only
sufficient to solve (1). If for the case m=0, k=0
one lets d4a=c, one finds an additional solution
u(r)=—tcre,, which gives no contribution for
homogeneous boundary conditions #®% (r) = 0, but
for a boundary condition

u®Or=R)=u®%(r=R)=0,
u(wo-o) (,-: R) = Uy, ,

which characterizes a rotating pipe.
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