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Stationary modes of the incompressible Stokes equation are derived using the method of 
potentials. Their relation to instationary modes is discussed. 

In a recent paper [1] a method developed by which give 
Hansen, Stratton, Morse, Feshbach [2] ("HSMF-
method") for solving linear vector-wave equations u 
in electrodynamics was applied to find analytical 
expressions for three-dimensional time-dependent 
solutions of the Stokes equation for a pipe with 
circular cross-section. In this paper we derive 
analytical expressions for stationary modes of the u 

stationary Stokes equation 
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with the help of "potentials" a, b for the same 
geometry and boundary condition as in [1], 

"r - [~bmk2Jm 
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Expressing u and p by potentials a(r,t), b(r,t) T h e boundary condition u(r = R,<p,z) = 0 leads to 
([1], ref.24) 

u = rot a + rot rot b , p = p0+ Q0 V0 div (e z Ab) , 

a = ae., b = b e:, (2) 

we get for a, b the differential equations 

Aa = 0 , AAb = 0 . (3) 

Introducing cylindrical coordinates r, cp, z and separ-
ating a (/•, <p, z) and b (r, cp, z) into a (r, cp, z) = 
ar (r) a,, (<p) az (z), b (r, (p, z) = br (r) bv (cp) bz (z) we 
find for k =£ 0 the solutions 

a(r, (p,z) = amJm (ikr) 

b(r, (p,z) = bmJm(ikr)e'm*eik: 

cm r 

the dispersion relation 
Ds(k, m):= ikRmJi(ikR) 

+ [k2R2-2rn(2 + rn)]J2
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+ ikR(2 + 3rn)JmJ2
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For m = 0 we find 
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which means either 

a) Jx(ik(j)R) = 0 , kU) = ik\j), 

(k\j) > 0 for z > 0) , 

a0 + 0 , b0 = c0 = 0, j= 1 , 2 ,3 , . . . 
imai ~ik: 77~ J'm(ikr) e'm<p e 
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a0 = 0 , b0 * 0 , c0 + 0 . 

See also [3], p. 547. 
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Solutions u(r,(p,z) which belong to a) or b) are 
given by 

a) u^j) = - efpa0ikU)Jl (ik(j)r) e''*"'1 

= -e,ä{fJxikPr) 

47) 

modes, since lim D (/:, w, a) = 0. D {k, m, a) de-
<7-0 

notes the right hand side of equation (19) in [1] for 
incompressible flow. Instead, the following relation 
holds (A- * 0): 
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As can be shown by simple but lengthy calculations 
a similar relation can be found between the sta-
tionary modes u(m-j) (/-, q>, z) and the instationary 
solutions u(m) (/•, (p, z, t, k, a) (equation (17) in [1]) 
which fulfill the boundary condition u { m ) ( r = R , 

{2J0 (/ k{j) /•) - / ku> r 7, (/ kU) r)} J0 (i k(j) R) 
2J0(ikU)R) - ikU)RJx (ikU)R) 
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Solutions for m i= 0 can be found from (5) with 
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where are solutions of (6) and ^ = bm (k^)2. 
The stationary pressure functions p(m,j) (r, (p, z) for :» ^ a ) = 

kU) 0, which follow from (2), (4) are given by 
r (m.j) 
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If Arw is a solution of (6) the same holds for 
Numerical calculations for m = 0 ([1]) with small 
but finite values of a are in agreement with (7 a) to 
(8 b). As can be seen from (6), there exist no 
solutions for k ^ with 

J'm(ikWR) = -Jm + l{ikV>R) 

m 

• A (m, kV>) (aQ = 0 for m = 0) . (12) 

A (m, k{j)) are constants and k^ is a solution of (6). 
The only exception of relation (12) is the stationary 
solution for m = 0, a0 0, b0 = c0 = 0. In this special 
case u(0-j) {r, z) follows directly from 

w(0)(/-, z, k. a) 

= - e 9 a 0 - k : (13) 

+ • 
kU)R 

Jm(ikU)R) = 0, m>0, for a = 0 since u(0) (/-, r, t,k,a = 0)± 0. For a = 0 
(a0 = 0 for ni = 0) one gets 

as might be supposed from Figs. 1, 2 in [1], 
The analytical limit process a -> 0 applied to (19) 

of [1], where a is the time-separation constant, does The relation between the stationary pressure func-

lim u{m) (/•. <p. 
a - o 

t. k. o) = 0 . 

the stationa 
not give the dispersion relation for the stationary tions (10) and the corresponding instationary ones 
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(Eq. (16) of [ 1 ] for cc = oo) is found to be 

Am.j) (/", (p, z) = p0 + 
da <7 = 0 

k = ku) 

B (w, kU)), (14) 

where B (m, k{J)) are constants. Without explicit 
knowledge of the stationary functions Ds(k,m), 
u(m,j) ^ ^(w.7) (p? -) it does not seem possible 
to state the relations (11), (12), (14). In order to get 
the relations (12) and (14), the process a -> 0 with 
bmo = b% = const must be used, where the constants 
bm enter the functions u(m\ p(m) according to equa-
tion (18) of [1] for c c = o o . If one interprets the 
functions w(m) or u{m-J) for k i= 0 as flow patterns in 
the pipe, the corresponding Reynolds-numbers must 
be assumed to be very small, which means that the 
coefficients a0, bm must be sufficiently small. 

The case of vanishing separation constant k is of 
certain interest. If one solves (1) to (3) for k = 0 and 
«(/ =/?. (p, z) = 0, only the trivial solution u = 0, 
p = const, results: especially the Hagen-Poiseuille-
solution for m = 0 does not appear. The reason is 
that the Hagen-Poiseuille-solution i*HP(r) = 
z/0(l - r 2 / R 2 ) e : cannot be represented by (3). For 
k = 0. m = 0, however, (1) is solved by 

.(0, 0) rot • rot 0) (/•), p(0-0) = p0- cqqVqZ , 

A ' - - V d r 
(15) 

where c is an arbitrary constant. The solution of 
ArArb{^0) (/•) = c consists of the general solution of 
the homogeneous equation and a special solution of 
the inhomogeneous equation. Taking into account 
the non-trivial, non-singular terms only, we have 

ft(0.0) (/.) = b r2 + ,A + b r2 ln r 
64 

jftio.o) = + 4 b o 

+ 4 6, (ln r + 1), 6, = 0 (16) 

which gives 

c 
u (0. 0) _ 
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As already Sexl [3] observed, the Hagen-Poiseuille 
solution can be found also from the time-dependent 

solutions of the Stokes equation for m = 0, k = 0 by 
the process lim w(

s
0> (r, t, a), where w(

s
0) denotes the 

<7-0 
c a = const 

functions found by Sexl ([3], p. 575). In order to find 
all stationary solutions for k = 0 from the time-
dependent solutions of the Stokes equation by using 
the HSMF-method we take the solutions found by 
Brösa [1]. Since he did not separate the Helmholtz-
equation for k = 0 quite correctly, we summarize 
the three types of time-dependent solutions for 
k = 0: 
a) m — 0, a0 arbitrary, b0 arbitrary: 

J^ f 
U) 

^J- Rj=0, j= 1 , 2 , 3 , . . . , K(
r
0) = 0 , 

"<0) = «o 

nU) 

V'o 
i / Ä -
r v0 

f 

r e -art 

V'O 

.-art (18) 

b) m = 0, b0 arbitrary, a arbitrary: 

u(0) = 0 , u f = 0 , 

i^ = b0-\J0 
vo V-Vo 

t R 
V'O 

(19) 

c) m = 0, 1, 2 bm arbitrary: 

V / / ) 
1 ^ L / ? | = 0 , w<m) = 0 , w<m) = 0 , 

Vo 

uim) = bn 

rO) 
J„ 

VQ f Vn 
r e im» ~-<Jmt (20) 

If we look for stationary solutions with k = 0 as 
result of a process o -> 0, c" = const, only solu-
tions of type b) can be used since in the other two 
cases <7=0 cannot be approached smoothly. Making 
explicit the argument used in [1] we get for 

wi0) (/", t, a) 

/>,»-
v'o ( V f M V H 
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the relations 

' (r, tr = 0) = o , ; 
\ ^ / <7 = 0 

/ 62w<_°) (a) 

\ d a 2 

Thus we find 

= o 2 v o 

lim «(0)(r, t , a ) = — - A R 2 - r 2 ) e . 
<7-0 4 t'o 

b0a2 = b* 
r rl 
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uo — b*R2/4vl. 

In the same way the stationary pressure Php(z) 
follows from 

p H P ( z ) = lim p M ( z , t , ( j ) , 
< 7 - 0 

boa2 = b* 
where p { 0 ) (z, t , er) is given by ([1], Eq. (27)) 

/?(°>(z, /, a ) = / 7 o - 0 o ^ o - - / o l 1/ -

With 

/?<0>(z, t , a = 0 ) = p 0 , 

V0 \ r V0 

ö /> ( ( V) \ 
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D Y ° \ A ) \ 2 Q0B0 
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we get finally 

, , 0o , * . "o 
/ > H P ( - ) = Po b o z = p 0 - 4 g0 v0 — j z . 

v0 K 

Contrary to the stationary solutions w(m ^ ( r , <p, z), 
the coefficient b * (or w0) which appears in wHP(r) 
may take values which give large Reynolds-numbers 
since wHP (/•) solves the stationary non-linear Navier-
Stokes equation. 

With regard to the infinite pipe the Hagen-
Poiseuille-solution remains as the only stationary 
solution of the Stokes equation which fulfills the 
(incomplete) boundary condition u ( r = R ) = 0, 
which possesses continuous partial derivatives every-
where and which is bounded for - oo < z < oo. 
The functions (r, (p, z) with k + 0 represent 
solutions of the Stokes equation for the semi-infinite 
pipe with u ( m - j ) ( r , cp,z-+ oo) = 0 and a prescribed 
boundary condition at z = 0. 

We want to mention that also A a = 0 (2) is only 
sufficient to solve (1). If for the case m = 0, k = 0 
one lets A a = c, one finds an additional solution 
u (/•) = — j c r e v , which gives no contribution for 
homogeneous boundary conditions w(0-0)(/-) = 0, but 
for a boundary condition 

M<0.0)(r = Ä ) = M(0.0)(r = Ä ) = 0 j 

m(®-°> (r = / ? ) = « , o, 
which characterizes a rotating pipe. 
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